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Efficient Parametrization of Generic Aircraft Geometry

Malcolm I. G. Bloor* and Michael J. Wilsonf
University of Leeds, Leeds LS2 9JT, England, United Kingdom

A new method is presented for the parametrization of aircraft geometry; it is efficient in the sense that a
relatively small number of "design" parameters are required to describe a complex surface geometry. The
method views surface generation as a boundary-value problem and produces surfaces as the solutions to elliptic
partial differential equations, hence its name, the PDE method. The use of the PDE method will be illustrated
in this article by the parametrization of double delta geometries; it will be shown that it is possible to capture
the basic features of the large-scale geometry of the aircraft in terms of a small set of design variables.
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Nomenclature
= smoothing parameter
= da/dxi
= thickness of fuselage at parametric

position x
= parameter determining degree of

"washout" in wings
= constants determining shape of

fuselage
= scaling between character lines 1

and 2
= parameter setting chord length of

airfoil
= partial differential operator of

order m
= vector valued function
= parameter setting span of inner

portion of wing
= parameter setting span of outer

portion of wing
= scaling constant
= parameter controlling swallow-tail

effect
= parameter controlling magnitude of

surface derivatives at wing
= adjustable design parameter
= adjustable design parameter
= parameter setting thickness of

airfoil
= parametric surface coordinate
= parametric surface coordinate
= dXldu
= parametrically defined surface

patch in physical space
= offset between character lines

1 and 2
= dyf/dO

zf(0)] — parametric curve at junction of
fuselage and inner wings

= parameter setting fore/aft position
of wingtip

= position of fuselage with respect to
character lines 1 and 2

= parameter setting length of wingtip
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[x,(6), y,(0), z,(0)] = parametric curve at tip of outer
wing

[jt(0), y(0), z(6)] = parametric curve at junction of
outer and inner wings

d£l = boundary of 11
X = parameter setting position along

fuselage
11 = finite domain in (u, v) parameter

space

I. Introduction

A CCORDING to Sloof,1 traditional aerodynamic design
can be broken down into two phases: 1) preliminary

design, in which the major design variables such as general
dimensions, wing loading, basic wing planform, etc., are cho-
sen and 2) detail design, in which the detailed geometry of
the wings and other components of the airframe are decided
upon. On the other hand, Raymer,2 discussing wider aspects
of aircraft design, distinguishes three phases in the design
process: 1) conceptual design, in which basic questions con-
cerning configuration, size, weight, and performance are an-
swered; 2) preliminary design, in which the configuration be-
comes fixed, quantitative geometric design starts, and major
items such as landing gear, propulsion, and control systems
are designed; and 3) detail design, during which the actual
pieces from which the aircraft will be built are designed and
the question of how the aircraft will be put together is con-
sidered.

Despite the differences in these two descriptions of aircraft
design, both identify an early stage in the design process dur-
ing which general questions concerning the aircraft's config-
uration are considered; when, in order to meet requirements,
various alternative design solutions must be considered. In
the past, when considering the question of the physical prop-
erties of new designs, designers have had to rely upon their
own knowledge and experience, and, further along in the
design process, model testing. However, the increasing so-
phistication of numerical methods and the increasing power
of computer hardware have meant that the properties of new
designs can be analyzed by computer long before any physical
embodiment is created.3 4 Furthermore, whereas the main use
of numerical methods has been as an alternative to model
testing, there is an increasing trend towards their use in the
design process as a tool for optimization.4~6

As far as numerical techniques for aerodynamic design are
concerned, Labrujere and Sloof4 distinguish two classes of
approach: 1) inverse design and 2) direct numerical optimi-
zation. The object of inverse design is to take a given pressure
distribution and then solve for a geometry that produces that
distribution. Direct numerical optimization, on the other hand,
involves coupling an aerodynamic analysis method with a
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scheme for numerical minimization. The analysis method is
used to calculate the value of a function that, in some sense,
characterizes the aerodynamics of the aircraft. This "measure-
of-merit" or "objective" function can be regarded as a func-
tion of whatever variables have been used to parametrize the
aircraft's geometry, and the task of the minimization method
is to find an optimum set of shape parameters that minimizes
this objective function. Thus, starting from some initial de-
sign, the combination of computer codes for analysis and
optimization iteratively moves through the parameter space
defined by the shape variables, each time producing a design
with an improved performance, eventually resulting in a de-
sign that meets requirements.

As various authors have pointed out,1-34 the great advan-
tages of direct numerical optimization are its flexibility when
it comes to allowing for the existence of constraints on the
design, its flexibility with respect to the selection of design
objectives, and the capabilities it offers for multipoint design.
However, the major disadvantage of the method is the great
computational cost of each iterative step, which is incurred
by the fact that the physical calculations must be carried out
accurately and which grows as the number of design variables
increases. Thus, given the present capabilities of computer
hardware, it is of paramount importance to limit the number
of variables characterizing a design. For this reason, Labru-
jere and Sloof4 report that although direct numerical opti-
mization of such global objective functions as lift-to-drag ratio
is feasible in two-dimensional problems, in three dimensions
the computational cost of such an approach is still daunting.
In fact, according to these authors, in "3-D wing design es-
pecially, the number of design variables is so large that the
practical application of the concept seems to be remote. . . ."

Despite its computational costs, a number of authors have
considered direct numerical optimization by trying to limit
the number of design variables. Cosentino and Holt,7 for
example, consider the optimized design of transonic wing con-
figurations by representing the two-dimensional airfoils that
define a wing geometry in terms of spline curves, and then
using the position of the spline control points, in particular
those points which affect the wing region wetted by supersonic
flow, as design variables to be optimized. Destarac and Re-
neaux,8 considering similar problems, adopted a number of
alternative approaches. In the case of the design by numerical
optimization of a supercritical airfoil, they produced optim-
ized airfoil shapes as the linear combination of existing su-
percritical airfoils from a library, the design variables in this
case being the "scaling factor" for each component airfoil. In
the same paper, they also describe the reduction of wing/
engine interference where the design variables used were
"aerofunctions": shapes whose effect on the pressure distri-
bution around a two-dimensional airfoil was known from in-
verse methods. This latter approach, the use as design vari-
ables of perturbation shapes having a known effect on the
pressure distribution around a baseline shape, was developed
by Aidala et al.y One of the advantages that they claimed for
the approach was the fact that such design variables have a
direct physical significance for the designer, thus helping him/
her to make a more effective choice of design parameters,
and hence, limiting the computational cost.

However, before the computer-aided analysis and optimi-
zation of the physical properties of a new design can begin,
the geometry of the initial concept must be converted to a
representation in a computer, which nowadays, according to
Raymer,2 often starts with a design drawing carried out with
a computer-aided drafting system. A design drawing describes
the aircraft's geometry in terms of "character lines" on its
surface. Obviously, these constitute only a partial definition
of the aircraft's surface, and an unambiguous geometric rep-
resentation only comes after the process of "lofting," effec-
tively the creation of surfaces between the character lines,
has been carried out. Thus, there is a need for mathematical

methods for representing or parametrizing curves and sur-
faces, which are flexible enough to represent a wide range of
shapes in an easy and intuitive manner. If a new design is
close to an existing design, then the old design can usefully
be used as the starting point for the description of the new,
since any modifications are likely to be relatively minor. How-
ever, when a completely new design is needed and the de-
signer must investigate a wide range of radical new shapes,
then a method for shape parametrization is required with
enough scope to enable the designer to choose from a wide
spectrum of different design possibilities.

We have discussed a number of methods that have been
used to parametrize geometry for the purposes of numerical
optimization. These methods implicitly assume that the new
optimized design will be close to the initial design point, and
furthermore they are concerned not with the global param-
etrization of the aircraft's surface, but with the parametri-
zation of a (fairly) localized part of its geometry. When seek-
ing to make improvements to an existing design, such an
assumption is justified, but when conducting a design study
of a radically new concept, especially for the whole aircraft,
as we have noted earlier, there is a need for quickly and
cheaply defining a wide range of new shapes. This is especially
true at present, given the increasing tendency to use numerical
optimization, with a consequent need to limit the number of
design variables, at an earlier and earlier stage in the design
process.

The rest of this article presents a new method for the ef-
ficient parametrization of complex geometries, efficient in the
sense that it can present complex three-dimensional surfaces
in terms of a relatively small set of design variables. The
method is known as the PDE method because of its use of
elliptic partial differential equations to generate surfaces. It
was developed in the area of computer aided geometric
design10-11 and has been used as the basis of automatic design
for function, i.e., numerical optimization, in a variety of con-
texts.12"16

In this article we shall confine ourselves to describing how
the method may be used to parametrize geometry, using as
our example the sort of double delta configuration that is
being considered for supersonic transports.5

II. PDE Method
The PDE method was introduced into the area of computer-

aided geometric design as a method for blend generation.10

The problem of blend generation is essentially that of being
able to generate a smooth surface to act as a bridging tran-
sition between neighboring "primary" surfaces. This may be
necessary in order to satisfy aesthetic considerations, or for
more functional reasons such as the need to relieve stress
concentrations or so that the object can be machined. Four
major categories of blends have been distinguished: blending
surfaces governed by strong functional constraints, aesthetic
blends, fairings, rounds, and fillets, and there are a number
of methods currently available for producing blend surfaces.17

Mathematically, the calculation of a blending surface may
be formulated as a classic boundary-value problem, in that
we require a function X defined over a domain 11 in two-
dimensional parameter space that satisfies specified boundary
data around the edge region dfl. In the case of blending, this
boundary data will typically be in the form of X and a number
of its derivatives specified on dfl. The order of the PDE, and
hence, the number of derivatives specified, will be determined
by the required degree of continuity between the blend and
the surfaces to which it joins. In the PDE approach we view
u and v as coordinates of a point in H and the function X as
a mapping from that point in H to a point in physical space.
To satisfy these requirements we regard X as the solution of
a PDE

= F(u, v) (1)
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where D%V(X) is a partial differential operator of order m in
the independent variables u and v, while F is a vector valued
function of u and v. Since we are considering boundary-value
problems it is natural to consider the class of elliptic PDEs.

Past work has concentrated upon solutions to the following
equation:

(2)

This equation is solved over some finite region 11 of the (u,
v) parameter plane, subject to boundary conditions on the
solution that usually specify how X and its normal derivative
dX/dn vary along dfl. The three components of the function
X [(x(u, v), y(u, v), z(u, v)] are the Euclidean coordinate
functions of points on the surface given parametrically in terms
of the two parameters u and v, which define a coordinate
system on the surface. Note that in the simplest cases Eq. (2)
is solved independently for the jc, y, and z coordinates.

The boundary conditions on X , which we shall refer to as
function boundary conditions, determine the shape of the
curves bounding the surface patch in physical space, or more
specifically, their parametrization in terms of u and v. The
boundary conditions on dX/dn, which we shall refer to as
derivative boundary conditions, basically determine the di-
rection in which the surface moves away from a boundary
and how "fast" it does so.

The partial differential operator in Eq. (2) represents a
smoothing process in which the value of the function at any
point on the surface is, in a certain sense, an average of the
surrounding values. In this way a surface is obtained as a
smooth transition between the boundary conditions imposed
on the function and its first derivative. The parameter a con-
trols the relative rates of smoothing between the u and v
parameter directions, and for this reason has been called the
smoothing parameter in earlier work.18

The original work on blending was extended to cover free-
form surface design11 and it was demonstrated that the method
is capable of producing surfaces of practical significance such
as propellers and ship hulls.19"21

The major difficulty in the analysis inherent in the design
of engineering surfaces is being able to represent them by a
method that involves few design parameters and which allows
easy manipulation in a predictable way.22 The PDE method
is not only capable of producing functionally useful surfaces,
but also of parametrizing them in terms of a relatively small
number of design parameters. The reason for this is that it
adopts a boundary-value approach to surface design, and
therefore, surfaces are defined by data distributed around
their edges rather than across their entire surface area. Being
so few in number it is a practicable proposition to optimize
computationally the surface with respect to its intended func-
tionality. Lowe et al.12 have shown how this can be achieved
by minimization techniques in the phase space defined by the
parameters describing the shape of the object. The problems
they considered were that of heat transfer, strength, and hy-
drodynamic performance (see also Refs. 13-16). The aim of
this research is to develop a methodology whereby an initial
design parametrized by the PDE method can automatically
be optimized against some suitably defined functional crite-
rion, subject to constraints prespecified by the designer in
order to ensure a sensible final design. This work is an attempt
to meet the need expressed by Shapiro and Voelcker23 for a
systematic way of considering the relationship between ge-
ometry and function.

Even though the PDE method is unlike other methods of
surface design, work has been carried out that indicates how
it can be integrated with conventional surface modeling sys-
tems. In particular, earlier work has shown how PDE surfaces
may be calculated in terms of conventional (B-)spline surfaces
by using collocation and finite element techniques.24-25 In this

way, one can calculate surfaces having the desirable properties
of PDE surfaces (very smooth complex surfaces parameter-
ized by few design variables) and the desirable properties of
B-spline surfaces (e.g., local control over limited regions of
the surface allowing for any "fine-tuning" that might be nec-
essary in the surface shape).

Although the PDE method was originally envisaged as a
technique for surface generation rather than representation,
work has been carried out using the PDE method to create
a surface model of an actual marine propeller. Initially, the
method was used to create a qualitative representation of the
surface, and then extended to a quantitative fit with data
describing a real propeller.20-21 According to current practice,
propeller blades are usually defined by specified airfoil sec-
tions placed at certain stations along the span of the blade.
These cross sections are arranged so as to produce the desired
load distribution for an efficient propeller. In contrast to this,
the PDE method produces a marine propeller blade by a
boundary-value approach where the two boundaries between
which the surface is formed are a curve with an airfoil shape
at the root of the blade (near where it joins to the boss), and
a curve of vanishingly small size at the tip of the blade. By a
suitable choice of derivative boundary conditions a shape re-
sembling a marine propeller can be obtained.

III. Definition of a Generic Aircraft
As outlined in Sec. II, the PDE method has been used in

a number of different application areas, e.g., the design of
ship hulls and marine propellers.13-14-20 In this earlier work a
gradual approach was adopted. The method was introduced
by showing how it could define generic geometries by using
simplified boundary conditions.11-19 It was then shown how it
could produce geometries that closely approximated those of
existing objects.20 Finally, it was shown how it could be used
as the basis for a process of automatic design for function, in
which an initial starting design was iteratively changed using
standard optimization techniques in order to improve its phys-
ical properties.13-14

This article describes the first stage in a similar program in
the area of aerodynamic design. The aim of this article is to
illustrate the method using generic geometries that are defined
in simple mathematical terms, and which permit the nature
of the solution to be illustrated.

The PDE method is a "boundary representation scheme"
in that it defines an object by means of description of its
surface.26-27 Usually, this means describing the surface of a
complex object in terms of a "patchwork" of simple surface
patches which, when using the conventional spline surface
methods of computer-aided geometric design,28'30 often have
to be "trimmed" in order to close the surface.31 The PDE
method adopts a boundary-value approach to surface design,
thus the starting point in the design process is the definition
of a series of space curves that constitute the "character lines"
on the surface of the aircraft that mark the boundaries be-
tween adjacent surface patches. We will illustrate the way in
which the PDE method can be used to define geometry by
using the example of a double delta wing configuration typical
of a supersonic transport.

The geometry considered in this example is simplified in
that only the large-scale features of the aircraft are repro-
duced. No effort has been made to reproduce small-scale
features or features such as detailed wing sections. The aim
of this article is to demonstrate the potential of the method.

A. Function Boundary Conditions for PDE Solution
In this illustrative example we consider an aircraft shape

made up of three patches: 1) a fuselage, 2) an inner wing,
and 3) an outer wing. For simplicity we will use a fuselage
that is defined algebraically (discussed later). The inner and
outer wings will be generated using the PDE method. The
character lines that form the boundaries between adjacent
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surface patches are 1) the curve where the inner and outer
wing meet, 2) the curve where the inner wing meets the fu-
selage, and 3) a curve at the tip of the outer wing.

The fuselage is generated as a surface of revolution whose
axis is parallel to the x axis, and where the y and z coordinates
of points on the surface are related by

y2 + z2 = a2 (3)

with

a(x) = «„ sin[(7r/18)(17Ar + 1)] + a, sin [(3 77/18) (17* + 1)]
(4)

where 0(), a{ are constants and x is a parameter that lies in
the range 0 < x — 1 • Note that as \ varies in the range 1 — »
0 we move from the front towards the rear of the aircraft,
and the cylindrically symmetric fuselage exhibits the waisted
profile characteristic of aircraft designed for supersonic flight.

The curve where the outer wing and inner wing meet we
will take to be a plane curve (z = constant), having the shape
of a simple airfoil described parametrically, thus,

x(0) = ch sin(0/2)

y(B) = -(f/2)sin(0) 4- (6.75)(cam)x(B)[ch -
x [ch - x(6)]/ch3

z = a() + hi

(5)

where the parameter 6 varies in the range 0 < 0 < 2vr; cam
is a parameter that controls the degree of (cubic) camber of
the airfoil; ch is a parameter that sets the chord length of the
airfoil; and hi is a constant determining the span of the inner
portion of the wing.

The second character line lies on the surface of the fuselage.
It is given parametrically by the equations

Xf(0) = (blch)x(6) - xd
yf(0) = yd + (3b/2ch)y(0)

zf(0) = V

where a is given in terms of
terms of 6 by

(6)

by Eq. (5) and x is given in

X(B) = [bx(0)/rlch] + (xtelrl) (7)

where b, xte, and rl are constants. The second character line
is basically a curve upon the fuselage, whose projection onto
a vertical plane containing the fuselage's axis is an airfoil of
the same type as character line 1, but scaled by a factor (bl
ch) and offset with respect to the first character line by the
vector (—xd, yd). The quantity xte determines the position
of the fuselage with respect to character lines 1 and 2.

The third character line lies at the tip of the outer wing. It
is given parametrically by the equations

xt(0) =
L ch

(8)

z, = a,, + hi + H2

where h2 is a constant that determines the span of the outer
wing, xt is a constant that determines the fore/aft position of
the wingtip, xtl is a constant that controls the length of the
wingtip, and aco is a constant that determines the amount of

"washout." We can see from the previous equations that as
9 varies in the range 0 —> 2?r, the wingtip is closed at a straight
line of length xtl.

Two wing surfaces are generated between these three char-
acter lines: the inner and outer surfaces of the double-delta.
The inner wing is generated by solving Eq. (2) using boundary
conditions obtained from character lines 1 and 2, and the outer
wing is generated by solving Eq. (2) using boundary conditions
obtained from the character lines 2 and 3. We solve Eq. (2)
over a rectangular region in the (w, v) parameter plane, e.g.,
[0, 1] x [0, 27r], and choose the boundary conditions so that
we map from the boundaries of the rectangular region in
parameter space to the boundaries of the corresponding sur-
face patch in physical space.

For simplicity we will assume that on the boundaries of the
surface patches

0(curve parameter) = v(surface parameter) (9)

so that for the inner wing X(Q, v) is given by Eq. (5), and
X(l, v) is given by Eqs. (6); similarly for the outer wing. We
will consider wings that are closed at the trailing edge, and
hence, look for solutions with the property that X(u, 0) =
X(u, 2ir). Thus, we do not require boundary conditions for
X(u, 0) and X(u, 2ir) other than the periodicity condition.

B. Derivative Boundary Conditions for PDE Solution
Equation (2) is fourth-order, hence, we require boundary

conditions on the normal derivatives of X(u, v) in the (u, v)
parameter plane, which in this case means boundary condi-
tions on Xu. The form of these derivative boundary conditions
is chosen so that there is continuity of surface normal between
adjacent surface patches. Now the surface normal is deter-
mined by the vector product Xu x Xv, and in this example
Xv is given on the boundary by the conditions on X , which
means that the surface normal at the edge of a surface patch
is determined by the boundary conditions we choose to impose
on Xu.

On character line 1, which lies at the junction of the outer
and inner wings, the derivative boundary conditions are

*„(*) = (sl)x(6)/2

y,,(0) = o
z,,(0) = -si

(10)

On character line 2, which lies on the fuselage, the deriv-
ative boundary conditions are

xu(6) = (s2v)(yf)f t

- (yf)eyf
(11)

where (yf)e = dyf/8B, axi = da/d(xi), and s2v is given by

s2v = s2 sin(0/2) (12)

s2 being another adjustable design parameter.
On character line 3, which lies at the wingtip, the derivative

boundary conditions are as follows:

swt-t
xtl

yu(B) = (-5*0
x(0)xtl

ch

zu(0) = 0

swt xtl\
- — - —sxt 2 \

(13)
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sxt is a parameter that controls the magnitude of the surface
derivatives at the tip; increasing it forces the surface away
from the tip.

With little effort it may be shown that these equations en-
sure that there is continuity of surface normal between the
outer and inner wing at character line 1, and between the
inner wing and the fuselage at character line 2. Furthermore
the quantities si, s2, sxt, swt, and aw are adjustable param-
eters whose values may be changed in order to control the
shape of the generated surfaces, with the continuity of surface
normal still being maintained between adjacent patches. The
effect of some of these parameters is illustrated in Sec. IV,
but we note here that aco controls the degree of "washout"
and swt controls the extent to which the wingtips exhibit a
"swallow-tail" effect.

Thus, to produce the inner wing, Eq. (2) is solved subject
to the function and derivative boundary conditions (6) and
(11) imposed at the fuselage, and function and derivative
boundary conditions (5) and (10) imposed at the outer wing/
inner wing junction. And to produce the outer wing, Eq. (2)
is solved subject to the function and derivative boundary con-
ditions (5) and (10) imposed at the wing junction, and function
and derivative boundary conditions (8) and (13) imposed at
the outer wing/inner wing junction.

The control that may be exercised over the shape of the
aircraft surface by altering the various "design" parameters
in the problem formulation is discussed in Sec. IV.

IV. Results
In Sec. Ill we defined a generic aircraft shape in terms of

20 parameters. As we shall see in this section the geometry
so generated captures many of the basic features of the type
of aircraft we are considering, at least at this broad level of
resolution.

An initial geometry is shown in Fig. 1, and the correspond-
ing values of the design parameters are shown in Table 1.
Notice that it displays the double delta shape characteristic
of a supersonic transport. In the next few sections the effect
of varying some of the design parameters upon the geometry
is shown. For all of the geometry changes that are considered,
it should be kept in mind that perfect connectivity (up to
continuity of surface normal) is maintained between the patches.

Because limitations of space the changes produced by only
a few of the design parameters introduced in Sec. Ill are
considered. However, if the reader cares to implement the
method as described earlier, he/she can ascertain the effect
of the various design parameters on the aircraft geometry.

A. Variation of Aircraft Planform
In this section we illustrate the effect of varying some of

the parameters that control the aircraft's planform. We will
do this by changing from the geometry shown in Fig. 1 to the

Table 1 Values of design
parameters for aircraft

geometry shown in Fig. 1

Parameter Value

flo
ch
cam
hi
xte
xd
xt
au
si
sxt
a,
r\
b
h2
rl
yd
xtl
swt
s2
a

1.3
6
0
4
2
1
1.5
0
2
2
0.5
25
20
6
25
0.1
1
_ i
2
0.3

Fig. 1 Initial aircraft geometry.

c) d)

Fig. 2 Variation in aircraft planform.

geometry shown in Fig. 2d, through those intermediate ge-
ometries shown in Figs. 2a-2c.

First, consider reducing the length of the wingtips. This
may be effected by changing the value of xtl from 1 to 0.2
(see Fig. 2a). Next, the width of the inner wing is reduced by
changing hi from 4 to 2.5, and the wingtip is rounded off by
increasing the value of the tip derivative parameter sxt from
2 to 7.6 (see Fig. 2b). Now the wings are swept back by
changing the value of xt from 1.5 to -3.5 (see Fig. 2c). Then,
finally, we may produce a swallow-tail effect by setting the
value of swt to -4.1 (see Fig. 2d).

B. Geometry of Wing/Body Blend
In this section we consider the region where the inner wing

blends smoothly to the fuselage. In particular we consider the
changes in the geometry of this region that are produced by
varying various design parameters, particularly those con-
trolling the wing camber and the derivative boundary con-
ditions imposed at the fuselage. For the sake of example, we
will fatten the fuselage (by setting the value of a() to 3.1) so
that it no longer looks realistic, but so the geometry changes
are readily visible.

In Fig. 3 the effect of increasing the camber parameter cam
from 0 to -0.4 is shown; note that the three surface patches
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a)

b)
Fig. 3 Introducing camber to wing: a) no camber and b) cubic cam-
ber.

Fig. 4 Changing the wing position.

Fig. 5 Changing the surface derivatives at the fuselage.

Fig. 6 SST configuration.

Fig. 7 Polycarbonate model of aircraft geometry.

making up the aircraft continue to blend smoothly together.
Figure 4 shows the effect of changing the parameter yd, which
controls the vertical position of the wing from -0.645 to
0.727.

Finally, Fig. 5 shows the influence of the slope parameter
52. This parameter controls the magnitude of the surface de-
rivatives Xn at the fuselage: increasing 52 causes the inner
wing to be pushed away from the character line where the
wing blends to the fuselage. Note that for the sake of illus-
tration the height of the blend at the fuselage has been ex-
aggerated.

V. Conclusions
It is the aim of this article to indicate the potential of the

PDE method as a system for the design of complex free-form
shapes. Its virtue is that it can efficiently parametrize such
shapes in terms of a small set of design parameters. This is
in contrast to conventional methods that typically use poly-
nomial patches,28-30 and which often require hundreds of in-
dividual patches to represent a complex object. Furthermore,
such spline-based patches often do not meet exactly at their
boundaries, and consequently, have to be trimmed or "stitched"
in order to close the surface of the object.31 The PDE method,
however, does not suffer from such problems, since its bound-
ary-value approach means that adjacent surface patches meet
exactly at their boundaries. The geometrical design of an
object begins with the specification of character lines, and
then the surfaces that span the space between them are re-
quired by the imposed boundary conditions to meet at their
boundaries exactly.

As mentioned in Sec. I, we believe that the techniques
described previously are a step towards integrating geomet-
rical with functional design in an automatic process: the step
being to parametrize geometry in terms of a small number of
parameters, which makes numerical optimization computa-
tionally feasible. Elsewhere, case studies, admittedly consid-
ering simplified model problems, have demonstrated how this
can be achieved for the design of objects for their mechanical15-16

and hydrodynamical properties.14 We hope that this work can
be extended to aerodynamics.

Of course, when compared to the geometry of a real air-
craft, the examples presented in this article are highly sim-
plified. In reality, e.g., in the design of a wing, the variation
of its section geometry along its span is usually highly influ-
enced by past experience and current trends in airfoil tech-
nology. However, this does not apply so strongly to other
parts of the airframe. The wing/body fairing has many of the
attributes and requirements of a blend surface: it must form
a smooth transition between the wing and the fuselage, while
at the same time satisfying requirements on its strength, weight,
and aerodynamic properties. Furthermore, previous work has
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shown that the PDE method can, in fact, approximate existing
foil-like geometries to a high degree of accuracy, in particular
the geometries of marine propellers.20-21 It will be the aim of
future work to show how well the PDE method can approx-
imate specific features that are deemed crucial in existing
geometries, e.g., specific airfoil cross sections.

Although much work is still required to demonstrate that
the method is capable of producing the specific geometries
found in aircraft, we believe that even now it still has value,
in that by using the method it is possible to rapidly produce
and numerically test the aerodynamic properties of a wide
range of radically different design alternatives. Note that once
the initial parametrization was produced, each different air-
craft geometry shown in this article was created interactively
at a silicon graphics workstation in real-time. As a further
indication of the range of geometries that are accessible to
the particular parametrization described earlier, consider Fig.
6, which shows a possible configuration for a high speed civil
transport.

Finally, one of the virtues of the method is that it can easily
produce a triangular-faceted approximation of the surface,
from which a physical prototype using the techniques of lay-
ered manufacture32 may be produced, which may then be cast
in metal for tunnel testing. Figure 7 shows such a prototype
created by the technique of selective laser sintering.
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